歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

整式總結(jié)(十六篇)

發(fā)布時間:2023-01-09 13:27:03 查看人數(shù):25

整式總結(jié)

【第1篇 初二數(shù)學(xué)整式的乘除與因式分解知識點總結(jié)

一.定義

1.整式乘法

(1).am·an=am+n[m,n都是正整數(shù)]

同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

(2).(am)n=amn[m,n都是正整數(shù)]

冪的乘方,底數(shù)不變,指數(shù)相乘.

(3).(ab)n=anbn[n為正整數(shù)]

積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.

(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7

單項式與單項式相乘,把它們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.

(5).m(a+b+c)=ma+mb+mc

單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,

(6).(a+b)(m+n)=am+an+bm+bn

多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相乘.

2.乘法公式

(1).(a+b)(a-b)=a2-b2

平方差公式:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

(2).(a±b)2=a2±2ab+b2

完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2倍.

3.整式除法

(1)am÷an=am-n[a≠0,m,n都是正整數(shù),且m>n]

同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

(2)a0=1[a≠0]

任何不等于0的數(shù)的0次冪都等于1.

(3)單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

(4)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

4.把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

二.重點

1.(_+p)(_+q)=_2+(p+q)_+pq

2._3-y3=(_-y)(_2+_y+y2)

3.因式分解兩種基本方法:

(1)提公因式法.提取:數(shù)字是各項的公約數(shù),各項都含的字母,指數(shù)是各項中最低的.

(2)公式法.

①a2-b2=(a+b)(a-b)兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積

②a2±2ab+b2=(a±b)2兩個數(shù)的平方和加上[或減去]這兩個數(shù)的積的2倍,等于這兩個數(shù)的和[或差]的平方.

【第2篇 初二數(shù)學(xué)知識點總結(jié):整式的乘除與因式分解

一.定義

1.整式乘法

(1).am·an=am+n[m,n都是正整數(shù)]

同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

(2).(am)n=amn[m,n都是正整數(shù)]

冪的乘方,底數(shù)不變,指數(shù)相乘.

(3).(ab)n=anbn[n為正整數(shù)]

積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.

(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7

單項式與單項式相乘,把它們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.

(5).m(a+b+c)=ma+mb+mc

單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,

(6).(a+b)(m+n)=am+an+bm+bn

多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相乘.

2.乘法公式

(1).(a+b)(a-b)=a2-b2

平方差公式:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

(2).(a±b)2=a2±2ab+b2

完全平方公式:兩數(shù)和[或差]的平方,等于它們的平方和,加[或減]它們積的2倍.

3.整式除法

(1)am÷an=am-n[a≠0,m,n都是正整數(shù),且m>n]

同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

(2)a0=1[a≠0]

任何不等于0的數(shù)的0次冪都等于1.

(3)單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

(4)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

4.把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

二.重點

1.(_+p)(_+q)=_2+(p+q)_+pq

2._3-y3=(_-y)(_2+_y+y2)

3.因式分解兩種基本方法:

(1)提公因式法.提取:數(shù)字是各項的公約數(shù),各項都含的字母,指數(shù)是各項中最低的.

(2)公式法.

①a2-b2=(a+b)(a-b)兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積

②a2±2ab+b2=(a±b)2兩個數(shù)的平方和加上[或減去]這兩個數(shù)的積的2倍,等于這兩個數(shù)的和[或差]的平方.

【第3篇 整式的加減數(shù)學(xué)知識點總結(jié)

1.單項式:表示數(shù)字或字母乘積的式子,單獨的一個數(shù)字或字母也叫單項式。

2.單項式的系數(shù)與次數(shù):單項式中的數(shù)字因數(shù),稱單項式的系數(shù);

單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

3.多項式:幾個單項式的'和叫多項式.

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);

5. .

6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.

7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.

8.去(添)括號法則:

去(添)括號時,若括號前邊是+號,括號里的各項都不變號;若括號前邊是-號,括號里的各項都要變號.

9.整式的加減:一找:(劃線);二+(務(wù)必用+號開始合并)三合:(合并)

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).

七年級數(shù)學(xué)知識點總結(jié)整式的加減就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。

【第4篇 整式知識點總結(jié)的

關(guān)于整式知識點總結(jié)的范本

一、代數(shù)式

1. 概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關(guān)系,計算得出的結(jié)果。

二、整式

單項式和多項式統(tǒng)稱為整式。

1. 單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。

2) 單項式的系數(shù):單項式中的 數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。

3) 單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

3. 多項式的排列:

1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

三、整式的運算

1. 同類項所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

2. 合并同類項:把多項式中的`同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。

4. 冪的運算:

5. 整式的乘法:

1) 單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。

2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

3) 多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

6. 整式的除法

1) 單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

2) 多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

四、因式分解把一個多項式化成幾個整式的積的形式

1) 提公因式法:(公因式多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。 取各項系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

2) 公式法:a.平方差公式; b.完全平方公式:

【第5篇 初中數(shù)學(xué)《整式運算》知識點的總結(jié)

初中數(shù)學(xué)《整式運算》知識點的總結(jié)

1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的.系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

3.整式的加減:有括號的先算括號里面的,然后再合并同類項。

4.冪的運算:

5.整式的乘法:

1)單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。

2)單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

3)多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

6.整式的除法

1)單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

2)多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

【第6篇 2023中考備考:初中數(shù)學(xué)知識點總結(jié)-整式

單項式和多項式統(tǒng)稱為整式。

1.單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可以是兩個數(shù)字或字母相乘)也是單項式。

2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。

3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

2.多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

2)多項式的次數(shù):多項式中,次數(shù)的項的次數(shù),就是這個多項式的次數(shù)。

3.多項式的排列:

1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

【第7篇 七年級下冊數(shù)學(xué)整式的運算知識點總結(jié)

七年級下冊數(shù)學(xué)整式的運算知識點總結(jié)

一、整式

單項式和多項式統(tǒng)稱整式。

a)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。

b)單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。

c)一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)(注意:常數(shù)項的單項式次數(shù)為0)

a)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數(shù)項。一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù).

b)單項式和多項式都有次數(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù)。多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù)。多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的.次數(shù)中最高的那一項次數(shù).

a)整式的加減實質(zhì)上就是去括號后,合并同類項,運算結(jié)果是一個多項式或是單項式.

b)括號前面是-號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘。

二、同底數(shù)冪的乘法

(m,n都是整數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;

b) 指數(shù)是1時,不要誤以為沒有指數(shù);

c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

d)當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為

(其中m、n、p均為整數(shù));

e)公式還可以逆用:

(m、n均為整數(shù))

a)冪的乘方法則:

(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。

b)(m,n都為整數(shù))。

c) 底數(shù)有負號時,運算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

d)底數(shù)有時形式不同,但可以化成相同。

e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

f) 積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數(shù))。

g) 冪的乘方與積乘方法則均可逆向運用。

三、同底數(shù)冪的除法

a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,

b)在應(yīng)用時需要注意以下幾點:

1) 法則使用的前提條件是同底數(shù)冪相除而且0不能做除數(shù),所以法則中a0。

2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a0) ,如100=1 ,(-2.50=1),則00無意義。

c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即

( a0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a0時,a-p的值一定是正的,當(dāng)a0時,a-p的值可能是正也可能是負的,如, d)運算要注意運算順序。

四、整式的乘法

單項式相乘,它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

a)積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;

b)相同字母相乘,運用同底數(shù)冪的乘法法則;

c)只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;

d)單項式乘法法則對于三個以上的單項式相乘同樣適用;

e)單項式乘以單項式,結(jié)果仍是一個單項式。

單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

單項式與多項式相乘時要注意以下幾點:

a)單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;

b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;

c) 在混合運算時,要注意運算順序。

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

a)多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應(yīng)等于原兩個多項式項數(shù)的積;

b)多項式相乘的結(jié)果應(yīng)注意合并同類項;

c)對含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘(_+a)(_+b)=_2+(a+b)_+ab,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(m_+a)和(n_+b)相乘可以得到。

五、平方差公式

兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即其結(jié)構(gòu)特征是:

a)公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數(shù);

b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

八、完全平方公式

兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即口訣:首平方,尾平方,2倍乘積在中央;

a)公式左邊是二項式的完全平方;

b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn)這樣的錯誤。

【第8篇 初中數(shù)學(xué)八年級知識點總結(jié):整式的乘除與分解因式

初中數(shù)學(xué)八年級知識點總結(jié):整式的乘除與分解因式

一、目標與要求

1.在推理判斷中得出同底數(shù)冪乘法的運算法則,并掌握“法則”的應(yīng)用。

2.理解冪的乘方的運算性質(zhì),進一步體會和鞏固冪的意義;通過推理得出冪的乘方的運算性質(zhì),并且掌握這個性質(zhì)。

3.通過探索積的乘方的運算性質(zhì),進一步體會和鞏固冪的意義,在推理得出積的乘方的運算性質(zhì)的過程中,領(lǐng)會這個性質(zhì)。

4.學(xué)生理解多項式乘以多項式的運算法則,能夠按多項式乘法步驟進行簡單的乘法運算。

5.會推導(dǎo)平方差公式,并且懂得運用平方差公式進行簡單計算。

6.會推導(dǎo)完全平方公式,并能運用公式進行簡單的運算,形成推理能力。

7.了解同底數(shù)冪的除法的運算性質(zhì),并會用其解決實際問題。

8.了解因式分解的'意義,以及它與整式乘法的關(guān)系。

二、重點、難點

1.重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用。

重點:單項式乘法運算法則的推導(dǎo)與應(yīng)用。

重點:平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的了解。

重點:了解因式分解的意義,感受其作用。

2.難點:同底數(shù)冪的乘法的法則的應(yīng)用。

難點:冪的乘方法則的推導(dǎo)過程及靈活應(yīng)用。

難點:單項式乘法運算法則的推導(dǎo)與應(yīng)用。

難點:多項式與多項式的乘法法則的應(yīng)用。

難點:整式乘法與因式分解之間的關(guān)系。

三、知識框圖

【第9篇 七年級上冊數(shù)學(xué)整式核心知識點總結(jié)

七年級上冊數(shù)學(xué)整式核心知識點總結(jié)

初中的學(xué)習(xí)意味著新的開始,新的沖刺。學(xué)習(xí)的難度增加了,知識范圍更廣,課程的內(nèi)容更加抽象,更加難以理解,下文為您整理七年級上冊數(shù)學(xué)整式核心知識點。

一·代數(shù)式

1.概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的.式

子叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

2.代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運算關(guān)系,計算得出的結(jié)果。

二·整式

單項式和多項式統(tǒng)稱為整式。

1.單項式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項式。單獨的一個數(shù)或字母(可

以是兩個數(shù)字或字母相乘)也是單項式。

2)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。

3)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

2.多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

3.多項式的排列:

1).把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

2).把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

【第10篇 七年級數(shù)學(xué)上冊整式的加減知識點總結(jié)

七年級數(shù)學(xué)上冊整式的加減知識點總結(jié)

一、目標與要求

1.理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2.理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎(chǔ)上,進行整式的加減運算。

3.理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎(chǔ)上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算性質(zhì)在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數(shù)量關(guān)系,并用還有字母的式子表示出來。

二、重點

單項式及其相關(guān)的概念;

多項式及其相關(guān)的概念;

去括號法則,準確應(yīng)用法則將整式化簡。

三、難點

區(qū)別單項式的系數(shù)和次數(shù);

區(qū)別多項式的次數(shù)和單項式的次數(shù);

括號前面是-號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤。

四、知識框架

五、知識點、概念總結(jié)

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。

2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

5.常數(shù)項:不含字母的項叫做常數(shù)項。

6.多項式的排列

(1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

(2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

7.多項式的排列時注意:

(1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

(2)有兩個或兩個以上字母的多項式,排列時,要注意:

a.先確認按照哪個字母的指數(shù)來排列。

b.確定按這個字母向里排列,還是向外排列。

(3)整式:

單項式和多項式統(tǒng)稱為整式。

8. 多項式的加法:

多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。

9.同類項:所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。

10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的'結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

11.掌握同類項的概念時注意:

(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

①所含字母相同。

②相同字母的次數(shù)也相同。

(2)同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

(3)所有常數(shù)項都是同類項。

12.合并同類項步驟:

(1)準確的找出同類項;

(2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變;

(3)寫出合并后的結(jié)果。

13.在掌握合并同類項時注意:

(1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0;

(2)不要漏掉不能合并的項;

(3)只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

14.整式的拓展

整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據(jù)添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關(guān)鍵,這是因為,一般多項式的乘除都要轉(zhuǎn)化為單項式的乘除。

整式四則運算的主要題型有:

(1)單項式的四則運算

此類題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點是考查單項式的四則運算。

(2)單項式與多項式的運算

此類題目多以解答題的形式出現(xiàn),技巧性強,其特點為考查單項式與多項式的四則運算。

(參考教材:初中數(shù)學(xué)七年級人教版)

練習(xí)

1、 如圖1,若d是ab中點,ab=4,則db=_____________;

2、 如果=2935,那么的余角的度數(shù)為______________;

3、 如圖2,從家a上學(xué)時要走近路到學(xué)校b,最近的路線為 (填序號),

理由是_______________________________________________ ;

4、將一個直角三角形繞它的直角邊旋轉(zhuǎn)一周得到的幾何體是( )

以上初一(七年級)上冊數(shù)學(xué)知識點:整式的加減是由數(shù)學(xué)網(wǎng)整理的,希望可以幫助大家,更多的精彩內(nèi)容請查看數(shù)學(xué)網(wǎng)。

【第11篇 整式的乘除與分解因式知識點總結(jié)

整式的乘除與分解因式知識點總結(jié)

第十五章 整式的乘除與分解因式

知識概念

1.同底數(shù)冪的乘法法則: (,n都是正數(shù))

2.. 冪的乘方法則: (,n都是正數(shù))

3. 整式的乘法

(1) 單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

4.平方差公式:5.完全平方公式:

6. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,、n都是正數(shù),且>;n).

在應(yīng)用時需要注意以下幾點:

①法則使用的.前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.

②任何不等于0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>;0時,a-p的值一定是正的; 當(dāng)a<0時,a-p的值可能是正也可能是負的,如 ,④運算要注意運算順序.

7.整式的除法

單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;

多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.

8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

分解因式的一般方法:1. 提公共因式法2. 運用公式法3.十字相乘法

分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

整式的乘除與分解因式這章內(nèi)容知識點較多,表面看來零碎的概念和性質(zhì)也較多,但實際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時,應(yīng)多準備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計算能力。在做題中體驗數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。

【第12篇 2023中考備考:初中數(shù)學(xué)知識點總結(jié)-整式的運算

1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

3.整式的加減:有括號的先算括號里面的,然后再合并同類項。

4.冪的運算:

5.整式的乘法:

1)單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。

2)單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

3)多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

6.整式的除法

1)單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

2)多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

四、因式分解——把一個多項式化成幾個整式的積的形式

1)提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。取各項系數(shù)的公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

2)公式法:a.平方差公式;b.完全平方公式

【第13篇 初中數(shù)學(xué)整式運算的知識點總結(jié)

初中數(shù)學(xué)關(guān)于整式運算的知識點總結(jié)

1.同類項——所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也叫同類項。同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

3.整式的加減:有括號的先算括號里面的,然后再合并同類項。

4.冪的運算:

5.整式的乘法:

1)單項式與單項式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個單項式里含有的字母連同它的指數(shù)作為積的因式。

2)單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

3)多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

6.整式的除法

1)單項式除以單項式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的`指數(shù)作為商的一個因式。

2)多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

四、因式分解——把一個多項式化成幾個整式的積的形式

1)提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。取各項系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

2)公式法:a.平方差公式;b.完全平方公式

【第14篇 2023中考數(shù)學(xué)知識點總結(jié):整式與分式

初中數(shù)學(xué)知識點歸納:整式與分式

整式與分式

整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)的項的次數(shù)叫做這個多項式的次數(shù)。

整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

冪的運算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn 除法一樣。

整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

分式的運算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等于乘以這個分式的倒數(shù)。

加減法:①同分母的分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

【第15篇 數(shù)學(xué)初一整式的加減知識點總結(jié)

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式;數(shù)字或字母的乘積叫單項式(單獨的一個數(shù)字或字母也是單項式)。

2.系數(shù):單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。所有字母的指數(shù)之和叫做這個單項式的次數(shù)。任何一個非零數(shù)的零次方等于1.

3.多項式:幾個單項式的和叫多項式。

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù)。

5.常數(shù)項:不含字母的項叫做常數(shù)項。

6.多項式的排列

(1)把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

(2)把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

7.多項式的排列時注意:

(1)由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動。

(2)有兩個或兩個以上字母的多項式,排列時,要注意:

a.先確認按照哪個字母的指數(shù)來排列。

b.確定按這個字母向里排列,還是向外排列。

(3)整式:

單項式和多項式統(tǒng)稱為整式。

8. 多項式的加法:

多項式的加法,是指多項式的同類項的系數(shù)相加(即合并同類項)。

9.同類項:所含字母相同,并且相同字母的次數(shù)也分別相同的項叫做同類項。

10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變。

11.掌握同類項的概念時注意:

(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

①所含字母相同。

②相同字母的次數(shù)也相同。

(2)同類項與系數(shù)無關(guān),與字母排列的順序也無關(guān)。

(3)所有常數(shù)項都是同類項。

12.合并同類項步驟:

(1)準確的找出同類項;

(2)逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變;

(3)寫出合并后的結(jié)果。

13.在掌握合并同類項時注意:

(1)如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0;

(2)不要漏掉不能合并的項;

(3)只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

14.整式的拓展

整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,學(xué)生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據(jù)添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關(guān)鍵,這是因為,一般多項式的乘除都要“轉(zhuǎn)化”為單項式的乘除。

整式四則運算的主要題型有:

(1)單項式的四則運算

此類題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點是考查單項式的四則運算。

(2)單項式與多項式的運算

【第16篇 整式的乘法知識點總結(jié)

關(guān)于整式的乘法知識點總結(jié)

1.單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;

②相同字母相乘,運用同底數(shù)的乘法法則;

③只在一個單項式里含有的.字母,要連同它的指數(shù)作為積的一個因式;

④單項式乘法法則對于三個以上的單項式相乘同樣適用;

⑤單項式乘以單項式,結(jié)果仍是一個單項式。

2.單項式與多項式相乘

單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

單項式與多項式相乘時要注意以下幾點:

①單項式與多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;

②運算時要注意積的符號,多項式的每一項都包括它前面的符號;

③在混合運算時,要注意運算順序。

3.多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應(yīng)等于原兩個多項式項數(shù)的積;

②多項式相乘的結(jié)果應(yīng)注意合并同類項;

③對含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。

以上就是初二數(shù)學(xué)知識點:整式的乘法,同學(xué)們,讓我們快樂學(xué)習(xí),不斷積累,努力學(xué)習(xí),提高成績,奮力前行吧!

整式總結(jié)(十六篇)

關(guān)于整式的乘法知識點總結(jié)1.單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。單項式乘法法則在運用…
推薦度:
點擊下載文檔文檔為doc格式

相關(guān)整式信息

  • 整式總結(jié)(十六篇)
  • 整式總結(jié)(十六篇)25人關(guān)注

    關(guān)于整式的乘法知識點總結(jié)1.單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。單項式乘法 ...[更多]

總結(jié)范文熱門信息