歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

等腰三角形總結(jié)(七篇)

發(fā)布時(shí)間:2023-05-10 15:57:06 查看人數(shù):44

等腰三角形總結(jié)

【第1篇 初中數(shù)學(xué)等腰三角形知識點(diǎn)部分總結(jié)

一、等腰三角形

1、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

推論3:等邊三角形的各角都相等,并且每一個角都等于60°

2、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

推論1:三個角都相等的三角形是等邊三角形

推論2:有一個角等于60°的等腰三角形是等邊三角形

3、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等知識點(diǎn),同學(xué)們都能靈活運(yùn)用了嗎。接下來還有更多更全的初中數(shù)學(xué)知識點(diǎn)盡在。

初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

二、平面直角坐標(biāo)系

1、平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

2、水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

3、平面直角坐標(biāo)系的.要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

4、三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

三、平面直角坐標(biāo)系的構(gòu)成

1、在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。

2、水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。

四、點(diǎn)的坐標(biāo)的性質(zhì)

1、建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

2、對于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)c的坐標(biāo)。

3、一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

五、因式分解的一般步驟

1、如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

2、通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

3、注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

六、因式分解

1、因式分解定義:把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

2、因式分解要素:①結(jié)果必須是整式

②結(jié)果必須是積的形式

③結(jié)果是等式

④因式分解與整式乘法的關(guān)系:m(a+b+c)

3、公因式:一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

4、公因式確定方法:

①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

②相同字母取最低次冪

③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

5、提取公因式步驟:

①確定公因式。

②確定商式

③公因式與商式寫成積的形式。

6、分解因式注意;

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

③雙重括號化成單括號

④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

⑤相同因式寫成冪的形式

⑥首項(xiàng)負(fù)號放括號外

⑦括號內(nèi)同類項(xiàng)合并。

【第2篇 初中數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)

初中數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)

對于等腰三角形的知識點(diǎn)內(nèi)容,同學(xué)們認(rèn)真看看下面的總結(jié)知識。

等腰三角形

1.等腰三角形的`性質(zhì)

①.等腰三角形的兩個底角相等。(等邊對等角)

②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

理解:已知等腰三角形的一線就可以推知另兩線。

2、等腰三角形的判定:

如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

通過上面對等腰三角形知識點(diǎn)的總結(jié)學(xué)習(xí),相信同學(xué)們對上面的知識點(diǎn)已經(jīng)能很好的掌握了,希望同學(xué)們很好的參加考試。

【第3篇 八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)必看

八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)必看

八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)

一、等腰三角形知識點(diǎn)

1.等腰三角形的性質(zhì)

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。

2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成“等腰三角形的三線合一”)。

3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

5.等腰三角形的.一腰上的高與底邊的夾角等于頂角的一半。

6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(需用等面積法證明)。

二、等腰三角形的判定:

如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊):等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

這以上是小編為大家提供的八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)。

【第4篇 初二數(shù)學(xué)上冊等腰三角形知識點(diǎn)總結(jié)

等腰三角形:有兩條邊相等的三角形叫等腰三角形.

相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。

等腰三角形性質(zhì):(1)具有一般三角形的邊角關(guān)系

(2)等邊對等角;(3)底邊上的高、底邊上的中線、頂角平分線互相重合;

(4)是軸對稱圖形,對稱軸是頂角平分線;(5)底邊小于腰長的兩倍并且大于零,腰長大于底邊的一半;(6)頂角等于180°減去底角的兩倍;(7)頂角可以是銳角、直角、鈍角,而底角只能是銳角.

等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形.

等邊三角形性質(zhì):①具備等腰三角形的一切性質(zhì)。

②等邊三角形三條邊都相等,三個內(nèi)角都相等并且每個都是60°。

5. 等腰三角形的判定:

①利用定義;②等角對等邊;

等邊三角形的判定:

①利用定義:三邊相等的三角形是等邊三角形

②有一個角是60°的等腰三角形是等邊三角形.

含30°銳角的直角三角形邊角關(guān)系:在直角三角形中,30°銳角所對的直角邊等于斜邊的一半。

三角形邊角的不等關(guān)系;長邊對大角,短邊對小角;大角對長邊,小角對短邊。

【第5篇 等腰三角形知識點(diǎn)總結(jié)

一、等腰三角形知識點(diǎn)回顧

等腰三角形的性質(zhì):

1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。

2、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成“等腰三角形的三線合一”)。

3、等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。

4、等腰三角形底邊上的垂直平分線到兩條腰的距離相等。

5、等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。

6、等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的.高(需用等面積法證明)。

二、等腰三角形的判定:

如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

知識點(diǎn)總結(jié):等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。

平面直角坐標(biāo)系:

在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:

①在同一平面。

②兩條數(shù)軸。

③互相垂直。

④原點(diǎn)重合。

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向。

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

平面直角坐標(biāo)系的構(gòu)成:

在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。

點(diǎn)的坐標(biāo)的性質(zhì):

建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

對于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)c的坐標(biāo)。

一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

因式分解的一般步驟:

如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

因式分解:

定義:

把一個多項(xiàng)式化成幾個整式的積的形式的變形叫把這個多項(xiàng)式因式分解。

因式分解要素:

①結(jié)果必須是整式。

②結(jié)果必須是積的形式。

③結(jié)果是等式。

④因式分解與整式乘法的關(guān)系:m(a+b+c)。

公因式:

一個多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個多項(xiàng)式各項(xiàng)的公因式。

公因式確定方法:

①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

②相同字母取最低次冪。

③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項(xiàng)式各項(xiàng)的公因式。

提取公因式步驟:

①確定公因式。

②確定商式。

③公因式與商式寫成積的形式。

分解因式注意:

①不準(zhǔn)丟字母。

②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)。

③雙重括號化成單括號。

④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列。

⑤相同因式寫成冪的形式。

⑥首項(xiàng)負(fù)號放括號外。

⑦括號內(nèi)同類項(xiàng)合并。

【第6篇 初中等腰三角形的知識點(diǎn)總結(jié)

關(guān)于初中等腰三角形的知識點(diǎn)總結(jié)

數(shù)學(xué)是被很多人稱之?dāng)r路虎的一門科目,同學(xué)們在掌握數(shù)學(xué)知識點(diǎn)方面還很欠缺,為此小編為大家整理了初二上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié),希望能夠幫助到大家。

等腰三角形:有兩條邊相等的三角形叫等腰三角形.

相等的.兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。

等腰三角形性質(zhì):

(1)具有一般三角形的邊角關(guān)系

(2)等邊對等角;

(3)底邊上的高、底邊上的中線、頂角平分線互相重合;

(4)是軸對稱圖形,對稱軸是頂角平分線;

(5)底邊小于腰長的兩倍并且大于零,腰長大于底邊的一半;

(6)頂角等于180°減去底角的兩倍;

(7)頂角可以是銳角、直角、鈍角,而底角只能是銳角.

等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形.

等邊三角形性質(zhì):

①具備等腰三角形的一切性質(zhì)。

②等邊三角形三條邊都相等,三個內(nèi)角都相等并且每個都是60°。

5.等腰三角形的判定:

①利用定義;

②等角對等邊;

等邊三角形的判定:

①利用定義:三邊相等的三角形是等邊三角形

②有一個角是60°的等腰三角形是等邊三角形.

含30°銳角的直角三角形邊角關(guān)系:在直角三角形中,30°銳角所對的直角邊等于斜邊的一半。

三角形邊角的不等關(guān)系;長邊對大角,短邊對小角;大角對長邊,小角對短邊。

【第7篇 《等腰三角形》期中復(fù)習(xí)知識點(diǎn)的總結(jié)

《等腰三角形》期中復(fù)習(xí)知識點(diǎn)的總結(jié)

(一)等腰三角形的性質(zhì)

1. 有關(guān)定理及其推論

定理:等腰三角形有兩邊相等;

定理:等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。

推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊,這就是說,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。

推論2:等邊三角形的各角都 相等,并且每一個角都等于60°。等腰三角形是以底邊的垂直平分線為對稱 軸的軸對稱圖形;

2. 定理及其推論的作用

等腰三角形的性質(zhì)定理揭示了三角形中邊相等與角相等之間的關(guān)系,由兩邊相等推出兩角相等,是今后證明兩角相等常用的'依據(jù)之一。等腰三角形底邊上的中線、底邊上的高、頂角的平分線 “三線合一”的性質(zhì)是今后證明兩條線段相等,兩個角相等以及兩條直線互相垂直的重要依據(jù) 。

(二)等腰三角形的判定

有關(guān)的定理及其推論

定理:如果一個三角形有兩個角相等,那么這兩個角所對 的邊也相等(簡寫成“等角對等邊”。)

推論1:三個角都相等 的三角形是等邊三角形。

推論2:有一個角等于60°的等腰三角形是等邊三角形。

推論3:在直角三角形中,如果一個銳角等于30°,那么它所 對的直角邊等于斜邊的一半。

等腰三角形總結(jié)(七篇)

八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)必看八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)一、等腰三角形知識點(diǎn)1.等腰三角形的性質(zhì)1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。2.等…
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)等腰三角形信息

  • 等腰三角形總結(jié)(七篇)
  • 等腰三角形總結(jié)(七篇)44人關(guān)注

    八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)總結(jié)必看八年級上冊數(shù)學(xué)等腰三角形知識點(diǎn)一、等腰三角形知識點(diǎn)1.等腰三角形的性質(zhì)1.等腰三角形的兩個底角相等(簡寫成“等邊對等 ...[更多]

總結(jié)范文熱門信息